# Application Performance On Multicores

**Douglas Doerfler** 

CSRI Seminar Feb. 4th, 2008

SAND2008-1084P Unlimited Release Printed February, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.





### **Executive Summary**

It's the memory subsystem! (not quite, but pretty darn close)





### What my talk is NOT about

- Massively parallel performance (l.e. performance off the node)
- Software programming models and Operating System Impact
  - A topic of a future System Engineering Seminar Series (SESS)
- Architecture research





### Multicore is here, are we ready?

- Dual-core is mainstream
  - Not a big deal, process level parallelism
- Quad-core is almost mainstream
  - In general, still no strategy for SW
  - It's an SMP?
  - MPI everywhere?
- Eight core is in the near future
- 10's to 100's of cores in the next 3 to 5 years?
- Platform Roadmap
  - Red Storm dual-core AMD
  - TLCC quad-core AMD
  - ASC/NMHPC next generation capability system N-core ?
  - ASC/Sequoia UQ platform in 2010 ?





### What is Multicore?

- For this talk, general purpose processors only
- Multicore comes in many flavors
  - How does a processor company differentiate?
  - Distinguishing architecture features
    - Cache hierarchy
    - Bus
    - Memory controller
    - Core architecture, including # of cores





### Intel: Clovertown/Harpertown

(don't ask me to explain Intel nomenclature!)

- Pseudo quad-core
  - Two dual-core die MCM
- Clovertown
  - 65 nm process
  - Core 2 vs Core 2 Duo?

- Harpertown
  - 45 nm process
  - New microarchitecture
     Core 2 Duo Extreme?
- 4 FLOPs/cycle/core







## Intel 5000P Northbridge/Memory Controller







### Intel 7300 Northbridge: Four Sockets







### AMD: Barcelona

- "True" quad-core
- Integrated memory controller
- Uses DDR2/3
  - I.e. no FBDIMM
- Hypertransport for multisocket nodes
  - NUMA issues
- Dual-channel DDR memory controller
- 2 MB shared LLC
- 4 FLOPs/cycle/core







### Sun UltraSPARC Niagra/T2

- "True" eight core die
- Each core supports 8 threads - 64 total threads
- Simple core microarchitecture
- Four dual-channel FBDIMM memory controllers!
- 4 MB shared LLC (L2)
  - 1 MB/MCU
- 1 FLOP/cycle/core!



Figure 5. The UltraSPARC T2 processor combines eight cores, memory management, cryptographic support, 10 Gb Ethernet, and PCI Express on a single chip





#### **IBM Power6**

- Dual-core!
- High clock rate!
  - Target 4+ GHz
- Dual-channel DDR2/3
- 32 MB LLC (L3)
  - But external to die
- 4
   FLOPs/cycle/cor
   e

IBM STG

#### POWER6<sup>TM</sup> Chip Overview

- Ultra-high frequency dual-core chip
  - 7-way superscalar, 2-way SMT core
  - 9 execution units
    - 2LS, 2FP, 2FX, 1BR, 1VMX,1DFU
  - 790M transistors
  - Up to 64-core SMP systems
  - 2x4MB on-chip L2
  - 32MB On-chip L3 directory and controller
  - Two memory controllers on-chip
- Technology
  - CMOS 65nm lithography, SOI
- High-speed elastic bus interface at 2:1 freq
  - I/Os: 1953 signal, 5399 Power/Gnd



Hot Chips 19

© 2007 IBM Corporation





### Test Systems by the Numbers

|                        | Clovertown   | Barcelona    | Niagra/T2 |
|------------------------|--------------|--------------|-----------|
| <b>Core frequency</b>  | 1.86         | 2.2          | 1.4       |
| # cores/socket         | 4            | 4            | 8         |
| <b>Execution arch.</b> | out of order | out of order | in order  |
| Total # cores          | 8            | 8            | 8         |
| # sockets              | 2            | 2            | 1         |
| <b>Total Threads</b>   | 8            | 8            | 64        |
| L1 Dcache              | 32KB/core    | 64KB/core    | 8KB/core  |
| L2 cache               | 2 x 4MB      | 512KB/core   | 4 x 1MB   |
| L3 cache               | 1            | 2MB          | -         |
| DRAM                   | 667MHz FB    | 667MHz DDR   | 667MHz FB |
| # mem. channels        | 4            | 2 x 2        | 8         |
| Peak read BW           | 21.3         | 2 x 10.7     | 42.7      |
| Peak write BW          | 10.7         | same bus     | 21.3      |
| FLOPs/cycle            | 4            | 4            | 1         |
| Peak FLOPs             | 59.5         | 70.4         | 11.2      |





#### **STREAMS**

- MPI and OMP
- Two socket nodes
  - 1: 1 core
  - 2: 1 core/socket
  - 4: 2 cores/socket
  - 8: 4 cores/socket
- Clovertown and Barcelona have same peak BW
- Clovertown effectively saturates at 1 core/socket
- Barcelona effectively saturates at 2 cores/socket
- Niagra/T2 becomes FLOPs bound
  - One socket node
- Note Task scheduling differences between MPI and OMP







#### Random Update

- Two socket nodes
  - 1: 1 core
  - 2: 1 core/socket
  - 4: 2 cores/socket
  - 8: 4 cores/socket
- Varying buffer size
  - Cache effects
  - TLB effects
- Higher is better
- Clovertown: extra cores don't add to performance
- Barcelona: memory subsystem effective at handling extra requests







#### Random Update Cont'd

- Niagra/T2 performance
  - Excellent scaling to 16 threads
  - **Excellent scaling** with buffer size
  - 64 threads < 32</li> threads
- Best case performance across architectures
  - Barcelona best up to 2048 MB buffer, after that?
  - Intel architecture exhibits lowest performance







#### **CTH**

- Shape Charge Problem
- Weak Scaling
  - This is how we plan to use multicore, I.e. spec'ing a minimum GB/core
  - Intracore MPI
- Tbird 1ppn is used as a measure of "ideal" scaling
- Lower is better
- At 8 cores, Barcelona is as fast as 8 Pentium's with Infiniband!
- Clovertown/Woodcrest northbridge issues are evident





#### **LAMMPS LJ**

- Strong Scaling
  - Weak scaling produces similar results
- Lower is better
- All architectures scale very well up to the number of cores/socket
- Niagra never achieves performance of x86-64 architectures, despite excellent scaling







### ?s & Discussion



